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Abstract

Generalising the method presented in an earlier paper an analytical solution is presented for the natural frequencies,

mode shapes and orthogonality conditions of an arbitrary system of Euler–Bernoulli beams interconnected by arbitrary

joints and subject to arbitrary boundary conditions.

r 2006 Elsevier Ltd. All rights reserved.

1. Introduction

In an earlier paper [1] the author and a colleague presented an analytical method to get exact solutions for
the natural frequencies and mode shapes of a free–free beam with large end masses. The beams were analysed
within the boundaries of linear theory of elasticity (Euler–Bernoulli beams). Here, the method outlined in
Ref. [1] is extended to apply also to a series of beams interconnected by arbitrary joints and subject to arbitrary
boundary conditions. Thus the present paper presents the general principle underlying the results presented for
special setups of beams (for example in Refs. [1,2]) and may give a general answer to any similar problems.

2. Determination of boundary conditions

The equation of motion of a beam with mass per unit length mb and flexural stiffness EI, neglecting rotary
inertia and shear force, is given as (see for example Ref. [3])

EI yivðx; tÞ þmb €yðx; tÞ ¼ 0, (1)

It is well known that using the method of separation of variables the solution to Eq. (1) yields the
eigenfunctions for the ith mode shape as

yi xð Þ ¼ A sin kxð Þ þ B cos kxð Þ þ C sinh kxð Þ þD cosh kxð Þ, (2)

where

k2
¼ oi

ffiffiffiffiffiffi
mb

EI

r
(3)
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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and oi is the ith natural frequency. The arbitrary constants are eliminated from Eq. (2) by means of the four
boundary conditions at x ¼ 0 and L.

Although the readers are probably familiar with the above equations and their implications, no paper to the
author’s knowledge has so far attempted to outline a general approach to a series of beams connected with
arbitrary joints and subject to arbitrary boundary conditions.

The key to the analytical solution aimed at in this paper is the use of the tangent frame for the description of
the beam boundary conditions. Thus it is mandatory to describe the boundary conditions of each beam
relative to the previous beam within the chain. For each beam, all following masses, including any following
beams, must be projected onto that point upon the beam where the following mentioned masses are attached to.
Let us illustrate this using various examples.

We reconsider first the example given in Ref. [1] and shown in Fig. 1, with end masses Mi and rotary inertias
I0i about the ends of the beam. Gi are the centres of masses, li the torsional springs stiffnesses, and EI, mb and
L the usual notation for the uniform beam.

Let us now project all masses onto those points of the beam where they are attached to. Since the situation
at both ends of the beam is analogous, we only consider the boundary condition at x ¼ 0. To this end we
introduce angle a1 to be the rotation of M1 relative to the beam due to the torsional spring stiffness l1.

Thus in reality during vibration M1 would rotate through angles 7a1 about the angle of equilibrium y1, but
to be able to set up the equations for the boundary conditions it must be assumed that angle a1 remains small
and thus does not significantly change y1 during vibration. This assumption seems just, considering the fact
that for the beams too, only linear theory of elasticity for small deflections is applied.

Fig. 2 shows the boundary condition geometry at x ¼ 0, where y(0) is the deflection and y0 0ð Þ the slope of
the beam, and y1 the fixed angle between O1G1 and the undeformed beam axis. Angle a1 is the rotation of the
mass relative to the beam due to the torsion spring of stiffness l1.
L, EI, mb
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Fig. 1. Free–free beam with end masses and torsion springs ([1], no gravity!).
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Fig. 2. Boundary conditions at x ¼ 0 [1].
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First we note that,

a1 ¼
EI y00 0ð Þ

l1
. (4)

Bending moment equilibrium: G1 is accelerated by €u ¼ �y 0ð Þo2 perpendicular to the beam. From this, the
moment about O1 is �M1g1o

2y 0ð Þ cos y1. Similarly the rotary inertia of the mass produces a moment about
O1 which is equal to �I01o2 y0 0ð Þ � a1½ �. Hence we have

EI y00 0ð Þ ¼ �I01o2 y0 0ð Þ � a1½ � � g1M1o2 y 0ð Þ cos y1½ �. (5)

Shear force equilibrium: The total acceleration of G1 is due to the transverse acceleration o2y(0) and the
rotational acceleration g1 y0 0ð Þ � a1½ �o2. Hence resolving the second term perpendicular to the beam, the total
shear force is

EI y000 0ð Þ ¼M1o2y 0ð Þ þ g1M1o2 y0 0ð Þ � a1½ � cos y1. (6)

It was mentioned before that the boundary conditions at x ¼ L are similar. Substituting the four boundary
condition equations gained this way into Eq. (2) and collecting the various terms with respect to A, B, C and D

we can set up a system of equations as

d11 d12 d13 d14

d21 d22 d23 d24

d31 d32 d33 d34

d41 d42 d43 d44

2
6664

3
7775

A

B

C

D

2
6664

3
7775 ¼ 0 (9)

and since A, B, C and D are non-zero in general, a non-trivial solution must satisfy

det½dnm� ¼ 0. (10)

Using the notation C ¼ cos (kL), S ¼ sin (kL), Ch ¼ cosh(kL) and Sh ¼ sinh(kL) results in the following
expressions for the dnm:

d11 ¼ d13 ¼ I01ko2,

d12 ¼ �EI k2
þ

EI I1k
2o2

l1
þ g1M1o2 EI g1k

2

l1
þ cos y1

� �
,

d14 ¼ EI k2
�

EI I1k2o2

l1
þ g1M1o2 �

EI g1k2

l1
þ cos y1

� �
,

d21 ¼ EI k3
þ g1kM1o2 cos y1,

d22 ¼M1o2 1þ
EI g1k

2 cos y1
l1

� �
,

d23 ¼ �EI k3
þ g1kM1o2 cos y1,

d24 ¼M1o2 1�
EI g1k

2 cos y1
l1

� �
,

d31 ¼ EI k2S þ g2M2o2 cos y2S þ I02 kC �
EI k2S

l2

� �
o2,

d32 ¼ EI k2C þ g2M2o2 cos y2C � I02 kS þ
EI k2C

l2

� �
o2,
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d33 ¼ g2M2o2 cos y2Sh� EI k2Shþ I02 kChþ
EI k2Sh

l2

� �
o2,

d34 ¼ g2M2o2 cos y2Ch� EI k2Chþ I02 kShþ
EI k2Ch

l2

� �
o2,

d41 ¼ �EI k3C þM2o2S þM2o2g2 cos y2 kC �
EI k2S

l2

� �
,

d42 ¼ EI k3S þM2o2C �M2o2g2 cos y2 kS þ
EI k2C

l2

� �
,

d43 ¼ EI k3ChþM2o2ShþM2o2g2 cos y2 kChþ
EI k2Sh

l2

� �
,

d44 ¼ EI k3ShþM2o2ChþM2o2g2 cos y2 kShþ
EI k2Ch

l2

� �
. ð11Þ

As a second example and based on the analysis of the single flexible beam, let us now consider a double
flexible beam system with end mass as shown in Fig. 3, where the dotted lines are the rigid body position of the
beams and the solid lines the superimposed elastic deflections. The base is assumed to be inertially fixed, the
end mass is rigidly connected to the second beam at O3, and O1 and O2 are pin joints with either rotary inertia
or joint stiffness. The cases of rotary inertia or stiffness will be called ‘‘unlocked’’ and ‘‘locked’’, respectively.
The second beam is inclined at a fixed angle y in the undeformed configuration.

Using the notation introduced before in connection with the single flexible beam the deflection shape of each
beam l for a natural frequency oi (i ¼ 1 . . .1) is given as

yl;iðxÞ ¼ Al;i sin ðkl;ixlÞ þ Bl;i cos ðkl;ixlÞ þ Cl;i sinhðkl;ixlÞ þDl;i coshðkl;ixlÞ, (12)

where

k2
l;i ¼ oi

ffiffiffiffiffiffiffi
mbl

EI l

r
; l ¼ 1; 2, (13)

where mbl is the mass per unit length of beam l and EIl the flexural stiffness.
For the boundary conditions of the beams, consider Fig. 3. For a locked Joint2 at O2 (stiffness) and an

unlocked Joint1 at O1 (rotary inertia Ig1), the boundary conditions of Beam1 at x1 ¼ 0 are

y1ð0Þ ¼ 0 (14)
O2

O3

G

u

O1

Beam1

Beam2

x1

x2

End Mass

a

: Rotary inertia Ig

or joint stiffness �

x

y

y1(x1,t)

y1(L1,t)

y2(L2,t)
y2(x2,t)

�

�

Fig. 3. Double flexible beam system with end mass (no gravity!).
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and

Ig1o2y01ð0Þ ¼ �EI1 y001ð0Þ. (15)

Recalling what was said before: when masses are involved, we must project all masses onto those points of the
beams where they are attached to. At x1 ¼ L1, projecting all masses attached to Beam2 (i.e., equilibrium of all
forces including translatory forces due to inertia) gives:

EI1y001ðL1Þ ¼ Ipo2 y01ðL1Þ þ y02ðL2Þ
� �

þMpo2y1ðL1Þ L2 þ að Þ cos y

þMpo2 y2ðL2Þ þ y02ðL2Þaþ y01ðL1Þ L2 þ að Þ
� �

L2 þ að Þ

þ

Z L2

0

mb2o2 y2ðx2Þ þ y1ðL1Þ cos yþ y01ðL1Þx2

� �
x2 dx2 ð16Þ

with Mp and Ip as the mass translatory and rotary inertia, and force equilibrium gives

EI y0001 ðL1Þ ¼ �Mpo2 y2ðL2Þ þ y02ðL2Þaþ y01ðL1Þ L2 þ að Þ
� �

cos y

� Mp þM2

� �
o2y1ðL1Þ �

Z L2

0

mb2o2 y2ðx2Þ þ y01ðL1Þ
� �

cos ydx2; ð17Þ

where M2 is the mass of Beam2. The integrals in Eqs. (16) and (17) are usually negligibly small but must be
included for very small or zero end masses to get better results for the natural frequencies.

Note that it was stressed in the beginning that the tangent frame formulation is used, and thus the boundary
conditions for Beam2 at x2 ¼ 0 are (relative to Beam1!):

y2ð0Þ ¼ 0 (18)

and

l2y02ð0Þ ¼ EI2 y002ð0Þ. (19)

The projection of all masses attached to the end of Beam2 at x2 ¼ L2 (i.e., equilibrium of all rotary forces
including rotary forces due to inertia) gives:

EI2y
00
2ðL2Þ ¼ Ipo2 y01ðL1Þ þ y02ðL2Þ

� �
þMpo2 y2ðL2Þ þ y02ðL2Þaþ y01ðL1Þ L2 þ að Þ þ y1ðL1Þ cos y

� �
a ð20Þ

and force equilibrium gives

EI y0002 ðL2Þ ¼ �Mpo2 y2ðL2Þ þ y02ðL2Þaþ y01ðL1Þ L2 þ að Þ þ y1ðL1Þ cos y
� �

. (21)

Applying the boundary conditions and collecting all terms with respect to A1,i, B1,i, C1,i, D1,i, A2,i, B2,i, C2,i

and D2,i, gives a matrix similar to that in Eq. (9) but with 8� 8 elements due to the eight boundary condition
equations. However, with Eqs. (14) and (18), implying that D1,i ¼ �B1,i and that D2,i ¼ �B2,i, here the matrix
reduces to:

d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26

d31 d32 d33 d34 d35 d36

d41 d42 d43 d44 d45 d46

d51 d52 d53 d54 d55 d56

d61 d62 d63 d64 d65 d66

2
6666666664

3
7777777775

A1;i

B1;i

C1;i

A2;i

B2;i

C2;i

2
6666666664

3
7777777775
¼ 0 (22)

and as before, a non-trivial solution must satisfy

det½dnm� ¼ 0. (23)

Neglecting the integral terms in Eqs. (16) and (17) and using the notation C1 ¼ cos (k1L1), S1 ¼ sin (k1L1),
Ch1 ¼ cosh (k1L1), Sh1 ¼ sinh (k1L1), C2 ¼ cos (k2L2), S2 ¼ sin (k2L2), Ch2 ¼ cosh (k2L2), Sh2 ¼ sinh (k2L2),
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the elements dnm in Eqs. (22) and (23) are given as

d11 ¼ d13 ¼ Ig1k1o2; d12 ¼ �2EI1 k2
1; d14 ¼ d15 ¼ d16 ¼ 0,

d21 ¼ k1 Ip þMp L2 þ að Þ
2

� �
o2C1 þ S1 EI1 k2

1 þMp L2 þ að Þo2 cos y
� �

,

d22 ¼ C1 EI1 k2
1 þMp L2 þ að Þo2 cos y

� �
þ Ch1 EI1 k2

1 �Mp L2 þ að Þo2 cos y
� �

� k1 Ip þMp L2 þ að Þ
2

� �
o2 S1 þ Sh1ð Þ,

d23 ¼ k1 Ip þMp L2 þ að Þ
2

� �
o2Ch1 þ �EI1 k2

1 þMp L2 þ að Þo2 cos y
� �

Sh1,

d24 ¼ o2 L2 þ að ÞMpS2 þ o2k2 Ip þMp L2 þ að Þa
� �

C2,

d25 ¼ o2 L2 þ að ÞMp C2 � Ch2ð Þ � o2k2 Ip þ a L2 þ að ÞMp

� �
S2 þ Sh2ð Þ,

d26 ¼ o2k2 Ip þMp L2 þ að Þa
� �

Ch2 þ o2 L2 þ að ÞMpSh2,

d31 ¼ M2 þMp

� �
o2S1 þ k1C1 �EI1 k2

1 þMp L2 þ að Þo2 cos y
� �

,

d32 ¼ M2 þMp

� �
o2 C1 � Ch1ð Þ þ EI1 k3

1 S1 � Sh1ð Þ

� k1 L2 þ að ÞMpo2 cos y S1 þ Sh1ð Þ,

d33 ¼ M2 þMp

� �
o2Sh1 þ k1Ch1 EI1k

2
1 þMp L2 þ að Þo2 cos y

� �
,

d34 ¼ o2 cos yMp S2 þ ak2C2ð Þ,

d35 ¼ o2 cos yMp C2 � Ch2 þ ak2 S2 þ Sh2ð Þð Þ,

d36 ¼ o2 cos yMp Sh2 þ Ch2ð Þ; d41 ¼ d42 ¼ d43 ¼ 0,

d44 ¼ d46 ¼ k2l2; d45 ¼ 2EI2k2
2,

d51 ¼ o2 cos yMpaS1 þ o2k1 Ip þMp L2 þ að Þa
� �

C1,

d52 ¼ o2 cos yMpa C1 � Ch1ð Þ � o2k1 Ip þMp L2 þ að Þa
� �

S1 þ Sh1ð Þ,

d53 ¼ o2k1 Ip þMp L2 þ að Þa
� �

Ch1 þ o2 cos yMpaSh1,

d54 ¼ k2 Ip þ a2Mp

� �
o2C2 þ EI2k

2
2 þ aMpo2

� �
S2,

d55 ¼ EI2k
2
2 þ aMpo2

� �
C2 þ EI2k

2
2 � aMpo2

� �
Ch2

� k2 Ip þ a2Mp

� �
o2 S2 þ Sh2ð Þ,

d56 ¼ k2 Ip þ a2Mp

� �
o2Ch2 þ �EI2k

2
2 þ aMpo2

� �
Sh2,

d61 ¼Mpo2 k1 L2 þ að ÞC1 þ cos yS1ð Þ,

d62 ¼Mpo2 �k1 L2 þ að Þ S1 þ Sh1ð Þ þ cos y C1 � Ch1ð Þð Þ,

d63 ¼Mpo2 k1 L2 þ að ÞCh1 þ cos ySh1ð Þ,

d64 ¼ � EI2k3
2C2 þMpo2 ak2C2 þ S2ð Þ,

d65 ¼ �Mpo2 �C2 þ Ch2 þ ak2 S2 þ Sh2ð Þð Þ þ EI2k
3
2 S2 � Sh2ð Þ,

d66 ¼ EI2k
3
2Ch2 þMpo2 ak2Ch2 þ Sh2ð Þ. ð24Þ

For a locked Joint1, Eq. (15) becomes ly01ð0Þ ¼ EI1y001ð0Þ, and the elements d11 and d13 in Eq. (24) are then
given by

d11 ¼ d13 ¼ �k1l1, (25)

where l1 denotes the joint stiffness of Joint1.
For an unlocked Joint2, Eq. (19) becomes Ig2o2y02ð0Þ ¼ �EI2 y002ð0Þ, and in that case the elements d44 and d46

in Eq. (24) are:

d44 ¼ d46 ¼ �Ig2k2o2, (26)

where Ig2 is the rotary inertia connected to Beam2 at Joint2.
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Fig. 4. Single flexible beam with spring and end mass in series (no gravity!).
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As so far only rotary stiffness has been taken into account at the various joints in the above example beam
structures, consider Fig. 4, where a translational spring stiffness is incorporated.

We apply the principle of mass projection mentioned repeatedly before and find that at joint O1 (x ¼ 0), no
masses are attached. The kinematic boundary conditions yield:

yð0Þ ¼ 0 (27)

and

y0ð0Þ ¼ 0. (28)

At joint O2 (x ¼ L), mass M is attached to the beam end via a spring with stiffness l. However, there is no
rotary (inertia) force acting upon the beam end, thus with EI being the beam flexural stiffness,

EI y00ðLÞ ¼ 0. (29)

Incorporating the mass and spring for the second boundary equation at x ¼ L, translatory force
equilibrium demands that:

EI y000ðLÞ ¼ ðym � yðLÞÞl, (30)

where from Fig. 4, ym denotes the position of the mass along y, relative to some static equilibrium position ym0.
It is also clear however that:

ðym � yðLÞÞl ¼ €ymM (31)

and that

€ymM ¼ �o2ymM. (32)

On inserting Eq. (32) into Eq. (31), we get

ðym � yðLÞÞl ¼ �o2ymM (33)

which can be solved for ym to finally give

ym ¼
yðLÞl

lþ o2M
. (34)

Replacing the right-hand side of Eq. (30) with the right-hand side of Eq. (32) and substituting the ym with
Eq. (34) gives:

EIy000ðLÞ ¼ �o2 yðLÞl
lþ o2M

	 

M ¼ �

yðLÞlo2M

lþ o2M
. (35)

Finally representing the boundary condition for a spring and mass in series.
With some basic considerations we can make a simple check whether the above equation could be correct at

all. First assume that M ¼ 0, which must of course result in the shear force being equal to zero and therefore
independent of the value of l. In fact, inserting M ¼ 0 in Eq. (35), the right-hand side does become zero, thus
giving the expected result. The same is true when inserting l ¼ 0, implying that the mass is not at all connected
to the beam end. Note here that we cannot at the same time set M ¼ 0 and l ¼ 0, for in this case the
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denominator in Eq. (35) is not defined. For l-N, we expect that the mass is practically directly connected to
the beam end and indeed, letting l-N in Eq. (35) yields EI y000ðLÞ ¼ �yðLÞo2M. The section on numerical
results give further supporting evidence for the correctness of Eq. (35).

With Eqs. (27) and (28) we find that in the present case, Eq. (2) implies that:

C ¼ �A (36)

and that

D ¼ �B, (37)

so that for the case at hand, Eq. (9) for the characteristic determinant simplifies to give:

d11 d12

d21 d22

" #
A

B

� �
¼ 0. (38)

With the known notation, collecting the terms with respect to A and B gives:

d11 ¼
o2MlðS � ShÞ

o2M þ l
� EI k3

ðC þ ChÞ;

d12 ¼
o2MlðC � ChÞ

o2M þ l
þ EI k3

ðS � ShÞ;

d21 ¼ �EI k2
ðS þ ShÞ;

d22 ¼ �EI k2
ðC þ ChÞ:

(39)

From the foregoing examples it is assumed that the reader is now familiar with the proposed principle of
determining the boundary conditions for a set of Euler–Bernoulli beams interconnected by arbitrary joints
and/or springs and subject to arbitrary dynamical and kinematic boundary conditions. The combination of
the examples presented here should enable the reader to find the boundary conditions for any similar problem,
but it is pointed out that writing the equations down by hand and collecting the terms as shown above to
arrive at the characteristic determinant can become very tedious and prone to errors. It is therefore
recommended to use algebraic manipulators which are able to handle symbolic calculations such as
MATHEMATICA or Maple.

The question may strike the reader as to why we do not set up the boundary conditions taking into account
any possible situation, e.g. translatory and rotatory masses and springs, and thus obtain a general theory. This
was the approach followed in the second example with the double flexible beam system, where we
distinguished between the cases of locked and unlocked joints and also gave different elements of the
characteristic determinant for the two cases at each joint (Eqs. (25) and (26)). However, it is one of the findings
of experimenting with the proposed principle for formulating the boundary equations that the simpler these
are, the more exact the results will be. Thus we always aimed at taking only the necessary boundary conditions
into account and not incorporating some that are irrelevant to the situation at hand. However, the reader is
free to intensively try out various sets of equations.

Regarding this point it is noted that whenever springs are applied we must be careful in view of the actual
numerical values we insert. For example, if we want the two end masses in the first example above (see Fig. 1)
to be connected to the beam by simple pin joints, we only set the two rotary joint stiffnesses l1 and l2 to a very
small value, say 10�5, but not equal to zero as they appear in some denominators (see Eqs. (4) and (11)). For
this reason we distinguished between the locked and unlocked joint case in the more complex second example.

3. Determination of natural frequencies

Having found the correct boundary conditions and having set up the characteristic determinant as described
in the previous section, the determinant expression can be solved for the natural frequencies oi so that the
determinant becomes zero (see Eqs. (10) and (23)).

The actual numerical calculation of the oi is typically the domain of computers with a suitable programme.
However, as a workaround the determinant expression, which is a function of o only, can be analysed even
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with a rather simple computer programme for changes in its sign, and a sufficiently narrow approach to the
point where the sign changes will indicate a root and thus one natural frequency or eigenfrequency of the
system under observation.

Numerous results for the first example, single free–free flexible beam with two end masses, are given in
Ref. [1] and shall not be repeated here.

For the second example, two flexible beams with an end mass, numerical results of natural frequencies are
presented using the setup of Ref. [4], which is shown in Fig. 5.

To simulate the setup of Ref. [4] the system properties are chosen to be L1 ¼ 2m, L2 ¼ 0.4m, mb1 ¼ 5.4 kg/m,
mb2 ¼ 15.0005 kg/m, EI1 ¼ 850.5Nm2, EI2 ¼ 3000.9Nm2, Mp ¼ Ip ¼ 0 and y ¼ 901. To create cantilever
beams, the spring stiffnesses are set to a very high value, thus l1 ¼ l2 ¼ 1010Nm/rad. Note that for correct
results as the end mass is zero, the integrals in Eqs. (16) and (17) are taken into account, but were not
considered in Eq. (24), which might therefore not be suited for reproducing the results shown in Table 1.

The agreement between the example beam system of Ref. [4] and the results produced here shows that
Eqs. (24)–(26) of the previous section are correct for this case.

For the third example from the previous section shown in Fig. 4 we let L ¼ 3m, mb ¼ 3 kg/m,
EI ¼ 105Nm2, M ¼ 100 kg and l ¼ 104N/m. The results are given in Table 2. Note that only for comparison,
the table also gives the analytical results from Ref. [3] for a beam with the same properties but without end
mass and spring, i.e. a standard clamped-free beam.

It was mentioned before that this section on numerical results will give further supporting evidence for the
correctness of the boundary conditions developed for the beam system shown in Fig. 4, especially for Eq. (35).
L2

L1

Fig. 5. Example beam system from Ref. [4].

Table 1

First four natural frequencies of example beam system of [4] in comparison with the determinant results

Freq. (rad/s) [4] Determinant

o1 6.04 6.04

o2 44.36 44.36

o3 108.13 108.11

o4 216.46 216.46

Table 2

First five natural frequencies of the example beam system shown in Fig. 4 with M ¼ 100kg and l ¼ 104N/m, compared with analytical

results of Ref. [3] for the same beam but without end mass and spring (clamped-free)

Freq. (rad/s) o1 o2 o3 o4 o5

Determinant 31.02 442.09 1249.82 2451.71 4053.81

Clamped-free 71.33 446.99 1251.59 2452.62 4054.36
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Thus by letting L ¼ 14m, mb ¼ 3.9786 kg/m, EI ¼ 3� 106Nm2, M ¼ 1010 kg and l ¼ 1010N/m, we
effectively produce a pinned end at x ¼ L. Table 3 compares the first three eigenfrequencies of a beam with
the above properties, computed using Eq. (39), to the analytical results of Ref. [3] for a pinned-clamped beam
with the same properties.

4. Determination of mode shapes

The natural frequencies oi found by following the procedure described in the previous section can be re-inserted
into the boundary condition equation systems (9) or (22), where all the matrix elements are now known. Letting,
for example, A ¼ 1 in Eq. (9) and deleting any one of the four equations, the remaining three equations can be
solved for B–D. Thus knowing A–D and oi, these can be inserted into Eq. (2) to yield the ith mode shape yi(x).

Similarly, letting, for example, A1,i ¼ 1 and deleting any one of the six Eq. (22), the other five can be solved
to yield B1,i, C1,i, A2,i, B2,i and C2,i. Then knowing oi and A1,i, B1,i, C1,i, A2,i, B2,i and C2,i, their insertion into
Eq. (12) yields the ith mode shape yl,i(x) for both beams l ¼ 1, 2.

For any other beam system the procedure for calculating the mode shapes is similarly followed. It is noted
that for further use in dynamic response analyses the mode shapes in their present form may be inconvenient,
containing trigonometric and hyperbolic functions and thus causing considerable computational burden. It is
therefore possible to use a standard polynomial fit yðxÞ ¼

PN
n�1anxn to represent the exact mode shapes. For

the first few modes typical orders for N are found to be 7 or 8.
To give a few samples, mode shapes for the third example beam system of sections 2 and 3 are presented in

Fig. 6 (mode shapes for the first example beam system in sections 2 and 3 are given in Ref. [1]).
It is seen from Table 2 and Fig. 6 that the example beam system rapidly assumes the properties of a

clamped-free beam with the same properties. Experimenting with different values for M and l provides
valuable insight into the behaviour of such beam systems.

5. Orthogonality of mode shapes and numerical accuracy

It is known that any particular solution of the homogeneous partial differential Eq. (1) under some
disturbance F(x,t) given as

EI yivðx; tÞ þmb €yðx; tÞ ¼ F ðx; tÞ, (40)
Table 3

First three eigenfrequencies of beam system in Fig. 4 with M ¼ 1010 kg and l ¼ 1010N/m, compared with analytical results for a clamped-

pinned beam [3]

Freq. (rad/s) [3] Determinant

o1 68.31 68.31

o2 221.36 221.36

o3 461.86 461.86

Fig. 6. First three mode shapes of third example beam system (solid) and clamped-free beam (dashed) for the properties given above (see

also Table 2).
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can be expressed in terms of a superposition of all mode shapes in the form:

yðx; tÞ ¼
X1
i¼1

yiðxÞqiðtÞ (41)

which is used for dynamic response analyses.
It is also known that the eigenmodes are orthogonal to each other. But what does this mean? The physical

interpretation of the mode shapes of a beam system can be visualised as that of a discrete portion of energy,
adding up to the infinite sum of discrete portions of energy expressed in Eq. (41) to finally yield the correct
energy related to any true beam motion under arbitrary disturbances.

For us, this means that we have to set up an energy expression in terms of two mode shapes yn(x) and ym(x),
taking into account the boundary conditions. The final extract of calculations as given for example in [1] is the
following rule:

Take the kinetic energy expressed by all boundary conditions, independent of its sign, and add up all terms.
When doing this, waive the eigenfrequency o and replace the beam deflection y(x) with the product of two
mode shapes yn(x) and ym(x).

We note that kinematic boundary conditions are irrelevant for the energy expressions. Now let us try this
for the complex second example of the beam system shown in Fig. 3. The boundary conditions for Beam1 are
given by Eqs. (14) through (17), the boundary conditions for Beam2 are given by Eqs. (18) through (21) for the
case Joint1 unlocked, Joint2 locked. Now we take all these expressions, add them independent of their signs in
the boundary equations, waive the o and replace the beam deflections by the product of two mode shapes.
Note that according to what was said just before, Eqs. (14) and (18) are purely kinematic and thus irrelevant
for the case at hand. Letting yn1(x) and yn2(x) be the nth mode shape for Beam1 and Beam2, respectively, the
described procedure gives:Z L2

0

mb1yn1ðx1Þym1ðx1Þdx1 þ

Z L2

0

mb2yn2ðx2Þym2ðx2Þdx2 þ Ig1y0n1ð0Þy
0
m1ð0Þ

þ Ip y0n1ðL1Þy
0
m1ðL1Þ

� �
y0n2ðL2Þy

0
m2ðL2Þ

� �
þMpyn1ðL1Þym1ðL1ÞðL2 þ aÞ cos y

þMp yn2ðL2Þym2ðL2Þ þ y0n2ðL2Þy
0
m2ðL2Þaþ y0n1ðL1Þy

0
m1ðL1ÞðL2 þ aÞ

� �
ðL2 þ aÞ

þ

Z L2

0

mb2 yn2ðx2Þym2ðx2Þ þ yn1ðL1Þym1ðL1Þ cos yþ y0n1ðL1Þy
0
m1ðL1Þx2

� �
x2 dx2

þMp yn2ðL2Þym2ðL2Þ þ y0n2ðL2Þy
0
m2ðL2Þaþ y0n1ðL1Þy

0
m1ðL1ÞðL2 þ aÞ

� �
cos y

þ ðMp þM2Þyn1ðL1Þym1ðL1Þ þ

Z L1

0

mb2 yn2ðx2Þym2ðx2Þ þ y0n1ðL1Þy
0
m1ðL1Þ

� �
cos ydx2

þ l2 y0n2ð0Þy
0
m2ð0Þ

� �
þ Ip y0n1ðL1Þy

0
m1ðL1Þ

� �
y0n2ðL2Þy

0
m2ðL2Þ

� �
þMp yn2ðL2Þym2ðL2Þ þ y0n2ðL2Þy

0
m2ðL2Þa

�
þ y0n1ðL1Þy

0
m1ðL1ÞðL2 þ aÞ þ yn1ðL1Þym1ðL1Þ cos y

�
a

þMp yn2ðL2Þym2ðL2Þ þ y0n2ðL2Þy
0
m2ðL2Þa

�
þ y0n1ðL1Þy

0
m1ðL1ÞðL2 þ aÞ þ yn1ðL1Þym1ðL1Þ cos y

�
¼ 0, ð42Þ

for any m6¼n. For m ¼ n the left-hand side of Eq, (42) gives a result identical to the generalised mass as
obtained with the first term of Lagrange’s equation:

d

dt

qT

q _qi tð Þ

	 

�

qT

qqi tð Þ
þ

qV

qqi tð Þ
¼ Qi tð Þ, (42)

where T denotes the system total kinetic energy, V is the potential energy and the Qi(t) are the generalised
forces. Due to this fact, the off-diagonal elements of the mass matrix M as obtained with the first term of
Eq. (42) are an indicator for the precision of the computations and a measure for the orthogonality of the
eigenmodes.
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For more complex systems than the examples given in the previous sections the off-diagonal elements of M
rapidly become non-negligible with an increasing number of mode shapes. In experiments with systems more
complex than the one shown in Fig. 3 the off-diagonal elements, relative to the diagonal elements, were of a
magnitude of 10�3 for more than about five mode shapes. For systems as shown in Figs. 1 and 4 the
magnitude of the off-diagonal elements relative to the diagonal elements is in the order of 10�6 even for more
than 10 eigenmodes, and this error is assumed to be only due to rounding and limits in numerical
computations. In this connection it is pointed out that these numerical limits will also occur when using any
other assumed mode shape expansion. The eigenmodes as computed with the method presented here often
allow for the use of only a few or even only the fundamental mode for dynamic response analyses. This is due
to the well-known fact that the convergence of Eq. (41) is quicker, the more accurate the inserted mode shapes
represent the real boundary conditions.

It is found that errors in numerical computations will have a more significant impact on the eigenfrequencies
in relation to the impact on the eigenmodes. Due to this reason it is sometimes possible to improve results a bit
by inserting computed mode shapes into Lagrange’s Eq. (42) and re-compute the eigenfrequencies and
eigenvectors with the system mass and stiffness matrices M and K as:

K� o2M
�� �� ¼ 0. (43)

All in all, the numerical accuracy must be checked for complex beam systems, but if the characteristic
determinants are not very ill-conditioned and if the results are carefully watched the proposed method to
arrive at correct natural frequencies and mode shapes of any arbitrary flexible beam system proves easy and
powerful.

6. Conclusions

This paper provides a method to compute the eigenfrequencies and mode shapes of any arbitrary system of
interconnected Euler–Bernoulli beams subject to any arbitrary kinematic or dynamical boundary conditions.

The method is applied to some examples and its correctness is supported by means of comparison with
known analytical results.

Thus this work may provide a basis of how to arrive at eigenfrequencies and mode shapes for a wide variety
of beam systems and similar problems.
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